3.446 \(\int \frac {1+\cos (c+d x)}{\sqrt {3-2 \cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=74 \[ \frac {2 \sqrt {5} \cot (c+d x) \sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1} E\left (\sin ^{-1}\left (\frac {\sqrt {3-2 \cos (c+d x)}}{\sqrt {\cos (c+d x)}}\right )|-\frac {1}{5}\right )}{3 d} \]

[Out]

2/3*cot(d*x+c)*EllipticE((3-2*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),1/5*I*5^(1/2))*5^(1/2)*(1-sec(d*x+c))^(1/2)*(
1+sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {2994} \[ \frac {2 \sqrt {5} \cot (c+d x) \sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1} E\left (\sin ^{-1}\left (\frac {\sqrt {3-2 \cos (c+d x)}}{\sqrt {\cos (c+d x)}}\right )|-\frac {1}{5}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(1 + Cos[c + d*x])/(Sqrt[3 - 2*Cos[c + d*x]]*Cos[c + d*x]^(3/2)),x]

[Out]

(2*Sqrt[5]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[3 - 2*Cos[c + d*x]]/Sqrt[Cos[c + d*x]]], -1/5]*Sqrt[1 - Sec[c +
d*x]]*Sqrt[1 + Sec[c + d*x]])/(3*d)

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rubi steps

\begin {align*} \int \frac {1+\cos (c+d x)}{\sqrt {3-2 \cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx &=\frac {2 \sqrt {5} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {3-2 \cos (c+d x)}}{\sqrt {\cos (c+d x)}}\right )|-\frac {1}{5}\right ) \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 38.38, size = 0, normalized size = 0.00 \[ \int \frac {1+\cos (c+d x)}{\sqrt {3-2 \cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(1 + Cos[c + d*x])/(Sqrt[3 - 2*Cos[c + d*x]]*Cos[c + d*x]^(3/2)),x]

[Out]

Integrate[(1 + Cos[c + d*x])/(Sqrt[3 - 2*Cos[c + d*x]]*Cos[c + d*x]^(3/2)), x]

________________________________________________________________________________________

fricas [F]  time = 1.17, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (\cos \left (d x + c\right ) + 1\right )} \sqrt {-2 \, \cos \left (d x + c\right ) + 3} \sqrt {\cos \left (d x + c\right )}}{2 \, \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+cos(d*x+c))/cos(d*x+c)^(3/2)/(3-2*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(-(cos(d*x + c) + 1)*sqrt(-2*cos(d*x + c) + 3)*sqrt(cos(d*x + c))/(2*cos(d*x + c)^3 - 3*cos(d*x + c)^2
), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right ) + 1}{\sqrt {-2 \, \cos \left (d x + c\right ) + 3} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+cos(d*x+c))/cos(d*x+c)^(3/2)/(3-2*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((cos(d*x + c) + 1)/(sqrt(-2*cos(d*x + c) + 3)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 0.42, size = 663, normalized size = 8.96 \[ \frac {\sqrt {3-2 \cos \left (d x +c \right )}\, \left (3 \sqrt {2}\, \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sqrt {-\frac {2 \left (-3+2 \cos \left (d x +c \right )\right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, i \sqrt {5}\right )+6 \sqrt {2}\, \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sqrt {-\frac {2 \left (-3+2 \cos \left (d x +c \right )\right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right ) \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, i \sqrt {5}\right )+3 \sqrt {2}\, \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sqrt {-\frac {2 \left (-3+2 \cos \left (d x +c \right )\right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, i \sqrt {5}\right ) \sin \left (d x +c \right )-\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {-\frac {2 \left (-3+2 \cos \left (d x +c \right )\right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, i \sqrt {5}\right ) \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )+3 \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {-\frac {2 \left (-3+2 \cos \left (d x +c \right )\right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, i \sqrt {5}\right ) \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )-\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {-\frac {2 \left (-3+2 \cos \left (d x +c \right )\right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, i \sqrt {5}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right )+3 \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {-\frac {2 \left (-3+2 \cos \left (d x +c \right )\right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, i \sqrt {5}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right )-4 \left (\cos ^{3}\left (d x +c \right )\right )+10 \left (\cos ^{2}\left (d x +c \right )\right )-6 \cos \left (d x +c \right )\right )}{3 d \left (-3+2 \cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {3}{2}} \sin \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+cos(d*x+c))/cos(d*x+c)^(3/2)/(3-2*cos(d*x+c))^(1/2),x)

[Out]

1/3/d*(3-2*cos(d*x+c))^(1/2)*(3*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*(-2*(-3+2*cos(d*x+c))/(1+cos(d*x+c))
)^(1/2)*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),I*5^(1/2))+6*2^(1/2)*(cos(d*x+c)/(1+cos(d
*x+c)))^(3/2)*(-2*(-3+2*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(
d*x+c),I*5^(1/2))+3*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*(-2*(-3+2*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Elli
pticF((-1+cos(d*x+c))/sin(d*x+c),I*5^(1/2))*sin(d*x+c)-2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(-2*(-3+2*cos
(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),I*5^(1/2))*sin(d*x+c)*cos(d*x+c)^2+3*2^(1/
2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(-2*(-3+2*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin
(d*x+c),I*5^(1/2))*sin(d*x+c)*cos(d*x+c)^2-2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(-2*(-3+2*cos(d*x+c))/(1+
cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),I*5^(1/2))*sin(d*x+c)*cos(d*x+c)+3*2^(1/2)*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*(-2*(-3+2*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),I*5^(1
/2))*sin(d*x+c)*cos(d*x+c)-4*cos(d*x+c)^3+10*cos(d*x+c)^2-6*cos(d*x+c))/(-3+2*cos(d*x+c))/cos(d*x+c)^(3/2)/sin
(d*x+c)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right ) + 1}{\sqrt {-2 \, \cos \left (d x + c\right ) + 3} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+cos(d*x+c))/cos(d*x+c)^(3/2)/(3-2*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((cos(d*x + c) + 1)/(sqrt(-2*cos(d*x + c) + 3)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\cos \left (c+d\,x\right )+1}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {3-2\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x) + 1)/(cos(c + d*x)^(3/2)*(3 - 2*cos(c + d*x))^(1/2)),x)

[Out]

int((cos(c + d*x) + 1)/(cos(c + d*x)^(3/2)*(3 - 2*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos {\left (c + d x \right )} + 1}{\sqrt {3 - 2 \cos {\left (c + d x \right )}} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+cos(d*x+c))/cos(d*x+c)**(3/2)/(3-2*cos(d*x+c))**(1/2),x)

[Out]

Integral((cos(c + d*x) + 1)/(sqrt(3 - 2*cos(c + d*x))*cos(c + d*x)**(3/2)), x)

________________________________________________________________________________________